Подписаться на обновления
21 маяПонедельник

usd цб 61.9408

eur цб 73.1769

днём
ночью

Восх.
Зах.

18+

ОбществоЭкономикаВ миреКультураМедиаТехнологииЗдоровьеЭкзотикаКнигиКорреспонденция
Худлит  Острый сюжет  Фантастика  Женский роман  Классика  Нон-фикшн  Поэзия  Иностранные книги  Обзоры рейтингов 
theoryandpractice.ru   понедельник, 14 мая 2018 года, 13:00

В девять раз хуже холокоста
Возможно ли измерить масштаб трагедии по количеству жертв


   увеличить размер шрифта уменьшить размер шрифта распечатать отправить ссылку добавить в избранное код для вставки в блог




Что страшнее — геноцид в Руанде, война в Ираке или теракты 11 сентября, и можно ли вообще измерять катастрофы в цифрах? Профессор математики Джордан Элленберг в своей книге «Как не ошибаться. Сила математического мышления», которая вышла в издательстве «МИФ», объясняет, как работает закон больших чисел и почему некоторые расчеты показывают, что уничтожение племени гереро в Намибии было более кровопролитным, чем все преступления гитлеровской Германии.

Насколько серьезен конфликт на Ближнем Востоке? Эксперт по вопросам борьбы с терроризмом Дэниел Баймен из Джорджтаунского университета приводит в Foreign Affairs холодные, безжалостные цифры: «Израильские военные сообщают о том, что с начала второй интифады [2000 год. — Д.Э.] до конца октября 2005 года палестинцы убили 1074 и ранили 7520 израильтян — для такой маленькой страны поразительные данные, пропорциональный эквивалент которых составляет 50 тысяч убитых и 300 тысяч раненых американцев». Такие подсчеты часто используются во время обсуждения ситуации в ближневосточном регионе. В декабре 2001 года Палата представителей Конгресса США заявила о том, что гибель 26 человек во время серии атак в Израиле «пропорционально смерти 1200 американцев». Ньют Гингрич писал в 2006 году: «Помните о том, что, когда Израиль теряет восемь человек, с учетом разницы в численности населения это эквивалентно потере почти 500 американцев». Не желая уступать авторам этих высказываний, Ахмед Мур написал в Los Angeles Times следующее: «Когда во время операции “Литой свинец” в секторе Газа Израиль убил 1400 палестинцев — что пропорционально 300 тысячам американцев, — будущий президент Обама хранил молчание».

Риторика с использованием пропорций не является исключительным правом, закрепленным лишь за Святой землей. Джеральд Каплан писал в 1988 году: «За последние восемь лет погибли, ранены или похищены с обеих сторон противостояния около 45 тысяч никарагуанцев — это эквивалентно 300 тысячам канадцев или 3 миллионам американцев». Министр обороны США в период Вьетнамской войны Роберт Макнамара сказал в 1997 году, что почти 4 миллиона погибших во время войны вьетнамцев «эквивалентны 27 миллионам американцев». Каждый раз, когда в какой-либо небольшой стране погибает много людей, авторы редакционных статей достают свои логарифмические линейки и начинают подсчитывать: сколько этих погибших «укладывается» в мертвых американцах?

Вот как можно получить эти цифры. Погибшие от рук террористов 1074 израильтян составляют 0,015% от общей численности населения Израиля (которая в период с 2000 по 2005 год составляла от 6 до 7 миллионов). Далее все эти эксперты приходят к выводу, что смерть 0,015% американского населения (что составляет около 50 тысяч человек) имела бы в данном случае такой же эффект.

Это линеоцентризм в чистейшей форме. Согласно аргументации с использованием пропорций, эквивалент 1074 израильтян в любой точке земного шара можно найти с помощью такого графика.

Количество израильских жертв — 1074 человек — эквивалентно 7700 испанцев или 223 тысяч китайцев, но всего 300 словенцев и одному или двум тувалуанцам.

Со временем (а может быть, и с самого начала?) такая аргументация начинает рушиться. Когда в момент закрытия в баре остается два человека и один из них сбивает с ног другого, это совсем не эквивалентно тому, что в это же время удар получают 150 миллионов американцев.

Еще один пример. Все согласны с тем, что одно из самых страшных преступлений столетия — когда в 1994 году было уничтожено 11% населения Руанды. Но мы не рассуждаем об этом кровопролитии так: «С точки зрения Европы сороковых это было в девять раз хуже холокоста». Малейшая попытка сделать это вызвала бы настоящее отвращение.

Вот одно из важнейших правил математической гигиены: когда вы проверяете на практике тот или иной математический метод, попробуйте выполнить одни и те же расчеты несколькими разными способами. Если получите в результате разные ответы, значит, с вашим методом что-то не так. […]

Безусловно, нельзя полностью отбросить пропорции. Пропорции действительно важны! Если вы хотите выяснить, в каком регионе Америки наиболее остро стоит проблема заболеваемости раком мозга, нет смысла смотреть на штаты с самым большим количеством смертных случаев от рака мозга. В таких штатах, как Калифорния, Техас, Нью-Йорк и Флорида, самый высокий уровень заболеваемости раком мозга, поскольку в них самая большая численность населения. Стивен Пинкер подчеркивает эту мысль в книге 2011 года, сразу ставшей бестселлером, — The Better Angels of Our Nature: Why Violence Has Declined («Лучшие стороны нашей натуры: почему насилия становится меньше»), — где он утверждает, что на протяжении всей истории человечества происходит устойчивое снижение уровня насилия. Двадцатое столетие получило дурную репутацию из-за огромного количества людей, попавших под жернова политических распрей между великими державами. Однако в действительности нацисты, Советы, коммунистическая партия Китая и колониальное господство, по мнению Пинкера, были с пропорциональной точки зрения не самыми эффективными виновниками массовых убийств: в наши дни погибает столько же людей! Сейчас мы не выражаем особой горечи по поводу давних кровопролитий во времена Тридцатилетней войны. Однако эта война проходила в менее населенном мире, и, по оценкам Пинкера, в ней погиб каждый сотый человек на Земле. В современном мире это означало бы уничтожение 70 миллионов человек, что больше количества погибших в обеих мировых войнах. […]

В надежде понять, что происходит, предлагаю провести воображаемую игру, которую мы назовем «Кто лучше всех подбросит монету». Игра очень простая.

Вы подбрасываете какое-то количество монет, а побеждает тот, у кого больше 99 всего монет упадет вверх лицевой стороной (аверс). Чтобы несколько разнообразить игру, представим, будто не у всех ее участников одинаковое количество монет. У Малой команды всего по десять монет на каждого человека, тогда как у Большой команды на каждого приходится по сто монет.

Если подсчитывать только абсолютное количество монет, упавших лицевой стороной вверх, одно можно утверждать почти наверняка: победителем в этой игре станет кто-то из Большой команды. Этот кто-то получит около 50 аверсов — показатель, который ни один участник Малой команды просто не сможет потянуть. Даже если в Малой команде было бы сто игроков, самый результативный из них получит восемь-девять монет, выпавших лицевой стороной вверх*.

* Я не собираюсь приводить здесь соответствующие расчеты, но, если вы захотите проверить мой результат, ключевым термином в данном случае будет «биномиальное распределение».

Кажется, это крайне несправедливо! У Большой команды с самого начала имеется большее преимущество. Давайте вместо подсчета абсолютного количества монет, выпавших той или иной стороной, будем определять победителя по относительной доле выпавших монет, что должно создать для двух команд более равные условия.

Но этого не происходит. Как я уже сказал, если в Малой команде было бы сто игроков, минимум один из них мог бы выбить хотя бы восьми-девяти аверсов. Следовательно, в результате он получит минимум 80% монет, выпавших лицевой стороной вверх. А как насчет Большой команды? Ни один из ее игроков не получит 80% орлов. Безусловно, физически такое возможно. Тем не менее этого не случится. На самом деле вам понадобилось бы около двух миллиардов игроков в составе Большой команды, чтобы появилась довольно высокая вероятность получения результата, свидетельствующего о серьезном перевесе. Разве не об этом говорит ваше интуитивное представление о правдоподобии? Чем больше монет вы подбрасываете, тем больше вероятность того, что вы приблизитесь к результату 50 на 50.

Вы можете попытаться сами! Я так и сделал, и вот что произошло. Многократно подбрасывая десять монет подряд, как это сделали бы игроки Малой команды, я получил такую последовательность количества монет, выпавших лицевой стороной вверх:

4, 4, 5, 6, 5, 4, 3, 3, 4, 5, 5, 9, 3, 5, 7, 4, 5, 7, 7, 9…

С сотней монет, как в случае Большой команды, я получил такую последовательность:

46, 54, 48, 45, 45, 52, 49, 47, 58, 40, 57, 46, 46, 51, 52, 51, 50, 60, 43, 45…

А в случае тысячи монет последовательность оказалась такой:

486, 501, 489, 472, 537, 474, 508, 510, 478, 508, 493, 511, 489, 510, 530, 490, 503, 462, 500, 494…

Честно говоря, я не подбрасывал тысячу монет. Вместо этого я поставил перед своим компьютером задачу смоделировать подбрасывание монет. Разве у кого-то найдется столько времени на тысячекратное подбрасывание монеты?

У одного человека нашлось — математик из Южной Африки Джон Эдмунд Керрич, которому дали опрометчивый совет посетить Европу ни больше ни меньше как в 1939 году. Его европейский семестр быстро превратился в незапланированное заключение в концлагере в Дании. Там, где обычный узник, не столь увлеченный статистикой, проводил бы дни заточения, царапая на стене камеры прошедшие дни, Керрич подбрасывал монету (всего 10 тысяч раз) и подсчитывал количество выпаданий лицевой стороной вверх. Его результаты выглядели следующим образом:

Как видите, доля монет, выпавших лицевой стороной вверх, непреклонно стремится к 50% по мере подбрасывания все большего количества монет, как будто под действием невидимых тисков. Тот же эффект можно увидеть и во время моделирования этого процесса. Доля монет, выпавших лицевой 101 стороной в первой группе попыток, составляет от 30 до 90%. В случае сотни подбрасываний подряд этот диапазон начинает сужаться и составляет от 40 до 60%. А когда количество подбрасываний достигает тысячи, диапазон количества выпаданий лицевой стороной вверх составляет всего от 46,2 до 53,7%.

Что-то толкает наши числа все ближе и ближе к 50%. Это равнодушная и сильная рука закона больших чисел. Я не стану приводить здесь точную формулировку соответствующей теоремы (хотя она удивительно красива!), но ее можно представить следующим образом: чем больше монет вы подбрасываете, тем более маловероятно, что вы получите 80% монет, выпавших лицевой стороной вверх. В действительности, если вы подбросите достаточное количество монет, шанс, что у вас будет 51% аверсов, становится ничтожным! Нет ничего примечательного, если в случае десяти подбрасываний наблюдается неравновесный результат, однако в случае сотни подбрасываний получение соразмерного неравновесного результата было бы настолько удивительным событием, что оно скорее всего заставит задуматься, не поработал ли кто с вашими монетами.

Понимание, что результаты эксперимента стремятся к фиксированной средней величине, когда этот эксперимент повторяется многократно, — факт далеко не новый. В действительности данное явление известно почти столь же давно, сколько существует математическое изучение самой вероятности. Этот принцип сформулировал в XVI столетии Джироламо Кардано — правда, без всяких формальностей; и только в начале XIX столетия Симеон Дени Пуассон придумал для него выразительное название — «закон больших чисел» (Loi des grands nombres).

Шлем жандарма

В начале XVIII столетия Якоб Бернулли предложил точную формулировку и математическое доказательство закона больших чисел. Теперь этот закон стал уже не наблюдением, а теоремой.

И данная теорема говорит нам, что игру Большой и Малой команды нельзя считать справедливой. Закон больших чисел всегда будет подталкивать результаты игроков Большой команды к 50%, тогда как у игроков Малой команды будет гораздо более широкий диапазон результатов. Однако было бы глупо приходить к заключению, что Малая команда «лучше» справляется с подбрасыванием монет лицевой стороной вверх, даже когда она побеждает в каждой игре. Если найти средний показатель доли аверсов, выпавших у всех игроков Малой команды, вместо того чтобы рассматривать относительную долю результативного игрока, этот показатель также окажется близким к 50%, как и у Большой команды. А если определить игрока с минимальным, а не максимальным количеством выпавших аверсов, Малая команда начинает выглядеть далеко не лучшим образом в плане подбрасывания монет лицевой стороной вверх: есть заметная вероятность, что один из игроков этой команды выбьет всего 20% аверсов, тогда как ни один член Большой команды никогда не получит столь плохого результата. Определение результатов по абсолютному количеству аверсов дает Большой команде неоспоримое преимущество; с другой стороны, использование относительных показателей так же сильно склоняет игру в пользу Малой команды. Чем меньше количество монет — в статистике это количество обозначается термином «размер выборки», — тем больше разброс значений относительной доли монет, выпавших лицевой стороной вверх.

Именно этот эффект делает результаты политических опросов менее надежными, когда в них принимает участие меньшее количество избирателей. То же самое касается и рака мозга. В небольших штатах выборки имеют малый размер — они напоминают тонкий тростник, сгибающийся под ветром перемен, тогда как большие штаты можно сравнить с величественными старыми дубами, которым любой ветер нипочем. Определение абсолютного количества случаев заболеваемости раком мозга характеризуется смещением в сторону больших штатов, тогда как измерение самой высокой (или самой низкой) относительной доли ставит малые штаты во главе списка. Именно поэтому в Южной Дакоте может быть самый высокий уровень смертности от рака мозга, тогда как Северная Дакота претендует на одно из последних мест по этому показателю. Причина состоит не в том, что гора Рашмор или торговый центр Wall Drug каким-то образом оказывают пагубное воздействие на мозг. Все проще: населению штатов меньшего размера по существу свойственна более высокая вариабельность.

Таков математический факт, который вам уже известен, даже если вы сами не догадываетесь об этом. Кто самый меткий снайпер в НБА? Через месяц после начала сезона 2011/2012 года пять игроков получили равное значение самого высокого процента попаданий в лиге: Армон Джонсон, ДеАндре Лиггинс, Райан Рейд, Хашим Табит и Ронни Тюриаф.

Кто-кто?

Дело в том, что эти пять игроков не были лучшими бомбардирами НБА. Они вообще почти не играли. Армон Джонсон, например, играл в одном матче за Portland Trail Blazers. Он сделал один бросок, оказавшийся точным. В целом пять игроков из этого списка сделали тринадцать бросков, каждый из которых попал в корзину. Маленькие выборки более вариабельны, поэтому ведущим игроком НБА неизменно становится тот, кто совершил небольшое количество бросков и кому каждый раз сопутствовала удача. Вы ни за что не стали бы утверждать, что Армон Джонсон был более метким снайпером, чем Тайсон Чендлер, самый результативный постоянный игрок Knicks, который попал в цель в случае 141 из 202 бросков за тот же период*. (Любые сомнения по этому поводу можно отбросить, взглянув на данные о результативности Джонсона на протяжении сезона 2010/2011 года, когда в ходе игры он сделал 45,5% попаданий — причем попаданий довольно заурядных.) Именно поэтому в стандартном списке лидеров не отображаются данные о результативности таких игроков, как Армон Джонсон. Вместо этого НБА включает в рейтинги только тех, кто превысил определенный порог игрового времени; в противном случае первые места в списке занимали бы никому не известные временные игроки с их выборками малого размера.

* И да, когда вы бросаете мяч в корзину, процент попаданий не в меньшей степени зависит от ваших врожденных данных. Крупный игрок, делающий броски в корзину из-под кольца или сверху в прыжке, с самого начала имеет серьезное преимущество. Но это не имеет прямого отношения к той идее, которую мы здесь рассматриваем.

Однако не всякая рейтинговая система разработана настолько грамотно, чтобы принимать во внимание закон больших чисел. В штате Северная Каролина, как и во многих других штатах в эпоху образовательной отчетности, были введены программы мотивации, рассчитанные на школы, добивающиеся высоких результатов по стандартизованным тестам. Рейтинг каждой школы определяется по среднему увеличению количества баллов, полученных учениками по тестам за период с весны текущего до весны следующего года. Школы, занявшие в рейтинге по данному показателю первые 25 мест, вывешивают свой плакат в спортивном зале и получают право с гордостью говорить о своих достижениях в близлежащих городах.

Кто побеждает в таком соревновании? Например, в 1999 году первое место в рейтинге (с «суммарным показателем результативности», равным 91,5) заняла начальная школа C.C. Wright Elementary в Северном Уилксборо. Это небольшая школа (всего 418 учеников), расположенная в штате, в котором средняя численность учеников начальных школ составляет 500 детей. Второе место заняла школа Kingswood Elementary (90,9 балла), за ней следует школа Riverside Elementary (90,4 балла). В школе Kingswood насчитывалось лишь 315 учеников, а в начальной школе Riverside из аппалачского городка Ньюленд учился только 161 ребенок.

Получается, что по данному показателю небольшие школы обошли все остальные школы штата Северная Каролина. Томас Кейн и Дуглас Стейджер провели исследование, в ходе которого было установлено, что в тот или иной момент семилетнего периода, охваченного исследованием, 28% самых маленьких школ штата попадали в первые 25 мест рейтинга; при этом из всех школ только 7% школ получали право вывесить плакат в спортзале.

Создается впечатление, что в маленьких школах уделяется больше времени для индивидуального обучения, поскольку учителя хорошо знают своих учеников и их семьи, и поэтому они лучше справляются с повышением результатов тестов.

Может быть, мне следует упомянуть, что статья Кейна и Стейджера называется так: The Promise and Pitfalls of Using Imprecise School Accountability Measures («Перспективы и подводные камни использования неточных показателей школьной отчетности»). Кроме того, нелишне отметить, что небольшие школы в среднем не демонстрируют тенденции к получению существенно более высоких результатов по тестам. И еще не мешало бы добавить, что школы, куда были направлены «группы по оказанию поддержки» (речь идет о школах, получивших от властей штата взбучку за низкие результаты по тестам), в большинстве своем также относились к числу небольших школ.

Короче говоря, насколько нам известно, школа Riverside не может считаться одной из лучших начальных школ штата Северная Каролина, так же как и Армон Джонсон не может быть самым метким снайпером в лиге. Небольшие школы занимают большинство из первых 25 мест в рейтинге не потому, что они лучшие, а потому что в маленьких школах более высокий уровень вариабельности результатов тестов. С одной стороны, несколько одаренных детей и несколько двоечников из третьего класса в состоянии существенно изменить средний показатель школы. С другой стороны, в крупной школе воздействие нескольких очень высоких или очень низких результатов просто растворится в большом среднем значении, практически не изменив общего показателя.

Не совсем ясно, по каким критериям определять, почему одна школа самая лучшая и почему граждане одного штата больше всего подвержены онкологическим заболеваниям, когда вычисление простых средних показателей не позволяет сделать этого? Если вы руководите работой многих групп, как вычислить эффективность каждой из них, если более мелкие группы с большой вероятностью займут как верхние, так и нижние позиции вашего рейтинга?

К сожалению, легкого ответа на этот вопрос не существует. Если в таком крохотном штате, как Южная Дакота, имеет место резкое увеличение уровня заболеваемости раком мозга, вы можете предположить, будто этот всплеск в значительной мере произошел по воле случая, и сделать вывод, что в будущем уровень заболеваемости раком мозга приблизится к общему показателю по стране. Это можно сделать, вычислив взвешенное среднее от уровня заболеваемости в Южной Дакоте и в целом по стране. Но как взвесить два данных показателя? В какой-то мере это искусство, требующее больших затрат труда на выполнение формальных операций, от описания которых я вас здесь избавлю.

Один важный факт впервые обнаружил Абрахам де Муавр, который внес большой вклад в теорию вероятностей. Его книга The Doctrine of Chances («Теория случайностей») стала одним из ключевых трудов по этому предмету.

(Даже в те времена популяризация математических достижений представляла собой активную область. Эдмонд Хойл, чтобы помочь любителям азартных игр освоить новую теорию, написал учебный трактат An Essay Towards Making the Doctrine of Chances Easy to those who Understand Vulgar Arithmetic only, to which is added some useful tables on annuities («Исследование, предназначенное, чтобы сделать „теорию случайностей“ более понятной для людей, понимающих только простую арифметику, а также несколько полезных таблиц аннуитетов»). Авторитет Хойла в вопросах карточных игр был настолько велик, что многие до сих пор ссылаются на его мнение; в определенной среде нередко можно услышать расхожие фразы: «По утверждению Хойла», «По правилам Хойла».)

Де Муавра не удовлетворял закон больших чисел, гласивший, что в долгосрочной перспективе доля аверсов в последовательности подбрасываний монет все больше приближается к 50%. Он хотел знать, насколько ближе. Чтобы понять сделанное Муавром открытие, предлагаю вернуться к подбрасыванию монет и еще раз проанализировать этот феномен. Но теперь вместо перечисления общего количества монет, выпавших лицевой стороной вверх, мы будем записывать разность между количеством фактически выпавших аверсов и количеством аверсов, выпадания которых можно ожидать в случае 50% подбрасываний. Если подбрасывать десяток монет, вы получите такую последовательность:

1, 1, 0, 1, 0, 1, 2, 2, 1, 0, 0, 4, 2, 0, 2, 1, 0, 2, 2, 4…

Если подбрасывать сотню монет, последовательность выглядит так:

4, 4, 2, 5, 2, 1, 3, 8, 10, 7, 4, 4, 1, 2, 1, 0, 10, 7, 5…

А в случае тысячи монет будет получена такая последовательность:

14, 1, 11, 28, 37, 26, 8, 10, 22, 8, 7, 11, 11, 10, 30, 10, 3, 38, 0, 6…

Как видите, отклонения от 50 на 50 в абсолютном выражении становятся больше по мере увеличения количества подбрасываний монет, хотя (как того требует закон больших чисел) эти отклонения становятся меньше в случае относительной доли монет, выпавших той или иной стороной. Де Муавр пришел к выводу, что типичное отклонение* зависит от квадратного корня из количества монет, которые вы подбрасываете. Подбросьте в сто раз больше монет, чем раньше, и типичное отклонение возрастет в 10 раз — во всяком случае, в абсолютном выражении. В случае доли от общего количества подбрасываний отклонение сокращается по мере увеличения количества монет, поскольку квадратный корень из количества монет увеличивается гораздо медленнее, чем само количество монет. Тот, кто подбрасывает тысячу монет, порой отклоняется от уровня равномерного распределения на целых 38 аверсов, однако — с точки зрения доли от общего количества бросков — это составляет всего 3,8% от распределения 50 на 50.

* Специалисты наверняка обратят внимание, что я всячески избегаю понятия «стандартное отклонение». Неспециалисты, желающие глубже изучить данный вопрос, могут поискать этот термин в справочнике.

Наблюдение де Муавра совпадает с концепцией, лежащей в основе расчетов стандартной погрешности в результатах политического опроса. Если вы хотите сократить уровень погрешности в два раза, вам необходимо опросить в четыре раза больше людей. Но если вы хотите знать, как правильно оценить довольно большое количество выпавших аверсов, можно определить, на сколько квадратных корней из числа попыток данное значение отклоняется от 50%. Квадратный корень из 100 равен 10. Следовательно, если я получил 60 аверсов за 100 попыток, это и есть отклонение на один квадратный корень от распределения 50 на 50. Квадратный корень из 1000 равен почти 31; следовательно, если я получил 538 аверсов за 1000 попыток, значит, мне удалось совершить нечто еще более удивительное, хотя во втором случае я получил всего 53,8% аверсов, тогда как в первом случае — 60%.

Однако де Муавр еще не поставил точку в своих изысканиях. Он обнаружил, что в долгосрочной перспективе отклонения от 50 на 50 всегда стремятся сформировать идеальную колоколообразную кривую, которую мы называем нормальным распределением. Основоположник статистики Фрэнсис Исидор Эджуорт предложил называть эту кривую шлемом жандарма. (Должен признаться, мне жаль, что этот термин не прижился.)

Колоколообразная кривая («шлем жандарма») высокая посередине и плоская по краям; другими словами, чем дальше отклонение от нуля, тем меньше вероятность такого отклонения. Это можно точно представить в количественной форме. Если вы подбрасываете N монет, вероятность того, что в итоге вы отклонитесь от 50% не более чем на квадратный корень из N, составляет 95,45%. Квадратный корень из 1000 равен 31; в действительности восемнадцать из представленных выше двадцати попыток в случае подбрасывания тысячи монет (или 90%) были в пределах 31 аверсов больше или меньше 500. Если я продолжил бы игру, относительная доля количества раз, когда я попадал бы в диапазон от 469 до 531, все больше приближалась бы к показателю 95,45%*.

* Точнее говоря, немного меньше, где-то 95,37%, поскольку квадратный корень из 1000 не в точности равен 31 — он чуть меньше.

Возникает ощущение, будто нечто воздействует на то, как это происходит. Вполне допускаю, что подобное ощущение было и у самого де Муавра. Согласно многим свидетельствам, он рассматривал закономерности в поведении монет при многократном подбрасывании (или в любом другом эксперименте при наличии фактора случайности) как проявление воли Бога, превращавшего любые кратковременные особенности монет, игральных костей и человеческих жизней в предсказуемое долгосрочное поведение, которым управляют непреложные законы и поддающиеся расшифровке формулы.

Однако такое ощущение опасно, поскольку как только вы примете за истину, будто чья-то трансцендентальная воля (Божья ли, Госпожи ли Удачи или Лакшми — чья конкретно, не имеет значения) подталкивает монеты к тому, чтобы они выпадали лицевой стороной вверх в половине случаев, вы сразу начинаете верить в так называемый закон средних: если пять монет подряд выпадают аверсом, тогда следующая почти наверняка выпадет реверсом. Если у кого-то есть три сына, следующей наверняка будет дочь. В конце концов, разве де Муавр не говорил нам, что крайние результаты (такие как четыре сына подряд) в высшей степени маловероятны? Говорил, и так оно и есть на самом деле. Тем не менее, если у вас уже есть три сына, возможность того, что четвертым тоже будет сын, далеко не маловероятна. В действительности вероятность, что у вас снова будет сын, такая же, как если это был бы ваш первый ребенок (Возможно, даже чуть больше, поскольку три сына подряд могут указывать на наличие у вас соответствующей генетической предрасположенности; ср. обсуждение далее. Прим. М. Г.).

На первый взгляд может показаться, что это противоречит закону больших чисел, который должен был бы разделить ваше потомство в равных частях на девочек и мальчиков*. Однако это только кажущееся противоречие. Легче понять, что происходит, на примере монет. Я мог бы начать подбрасывать монеты и получить 10 аверсов подряд. Что произойдет далее? Прежде всего вы заподозрите, будто что-то не так с вашей монетой. Во второй части книги мы вернемся к этому вопросу, но пока будем исходить из предположения, что монета у нас правильная. Итак, закон гласит: по мере того как я подбрасываю монету все больше и больше раз, относительная доля выпавших аверсов должна приближаться к 50%.

Здравый смысл говорит, что теперь — дабы скорректировать существующий дисбаланс — вероятность выпадания реверсов должна быть немного выше.

* На самом деле точнее так: 51,5% мальчиков и 48,5% девочек — но кому придет в голову подсчитывать?

Но тот же здравый смысл еще более настойчиво утверждает: монета никак не в состоянии помнить, что с ней происходило, когда я подбрасывал ее первые десять раз!

Не хочу держать вас в неведении. Здравый смысл прав во втором случае. Закон средних получил не очень подходящее название, поскольку законы должны быть истинными, а этот закон ложный. У монет нет памяти, а значит, у следующей монеты, которую вы подбросите, такой же шанс 50 на 50 выпасть лицевой стороной вверх, что и у любой другой. Общая относительная доля монет стремится к 50% вовсе не по причине благоволения судьбы к реверсам — дабы компенсировать уже выпавшие аверсы. Причина в том, что чем больше вы подбрасываете монету, тем больше уменьшается влияние первых десяти подбрасываний. Если я подброшу монету еще тысячу раз и получу при этом примерно половину аверсов, то их доля в серии первых 1010 подбрасываний также приблизится к 50%. Именно так работает закон больших чисел: не уравновешивая то, что уже произошло, а разбавляя произошедшее новыми данными до тех пор, пока прошлое станет настолько пропорционально незначительным, что его вполне можно будет забыть.

Пережившие катастрофу

Что применимо к монетам и результатам тестов, также относится к массовым убийствам и геноциду. Если оценивать количество погибших в доле от численности населения страны, худшие преступления будут сосредоточены в самых маленьких странах. Мэтью Уайт, автор довольно мрачной книги Great Big Book of Horrible Things («Большая книга ужасов»), расположив кровопролития ХХ столетия именно в таком порядке, пришел к выводу, что первые три места занимают следующие преступления: уничтожение племени гереро в Намибии германскими колонистами; массовое убийство камбоджийцев Пол Потом; война короля Леопольда в Конго. В этот список не входят ни Гитлер, ни Сталин, ни Мао и ни огромные массы людей, которых истребили эти деятели.

Подобное смещение оценки в сторону стран с меньшей численностью населения создает проблему: где наше подкрепленное математическими выкладками правило, позволявшее бы точно определять, насколько тяжело нам воспринимать новости о гибели людей в Израиле, Палестине, Никарагуа или Испании?

Вот эмпирическое правило, которое я считаю приемлемым: если масштаб катастрофы настолько велик, что уместно говорить об «переживших катастрофу», тогда целесообразно оценивать количество погибших в виде относительной доли от общей численности населения. Когда речь идет о выживших после геноцида в Руанде, то это может быть любой тутси, живущий в стране*. Следовательно, уместно было бы сказать, что геноцид уничтожил 75% племени тутси. При этом у вас были бы все основания утверждать, что катастрофа, унесшая жизни 75% населения Швейцарии, является «швейцарским эквивалентом» того, что произошло с тутси.

* Массовое убийство в Руанде представителей народности тутси по приказу правительства хуту в 1994 году. Прим. М. Г.

С другой стороны, было бы абсурдно называть кого-либо из обитателей Сиэтла «пережившими катастрофу» после террористической атаки на Всемирный торговый центр. Следовательно, нецелесообразно оценивать количество погибших во Всемирном торговом центре в виде доли от всех американцев. В тот день в башнях-близнецах погиб один из сотни тысяч американцев, или 0,001%. Эта цифра слишком приближается к нулю, чтобы мы могли воспринять ее и удержать в своем сознании. Кроме того, было бы рискованно заявлять, что швейцарским эквивалентом терактов во Всемирном торговом центре является массовое убийство, унесшее жизни 0,001% швейцарцев, или 80 человек.

И все-таки каким образом нам составлять рейтинг злодеяний, если не по абсолютному количеству и не по относительной доле? Некоторые сравнения очевидны. Геноцид в Руанде был хуже терактов 11 сентября, теракты 11 сентября были хуже стрельбы в школе Columbine, а случившееся в этой школе хуже гибели одного человека в автокатастрофе, произошедшей из-за нетрезвого состояния водителя. Другие события, разделенные пространством и временем на огромные расстояния, сравнивать труднее. Действительно ли Тридцатилетняя война была более кровопролитной, чем Первая мировая? Как ужасающий геноцид в Руанде, длившийся не слишком долго, можно сравнить с затяжной и жестокой войной между Ираном и Ираком?

Большинство математиков сказали бы, что вошедшие в историю катастрофы и злодеяния в конечном счете образуют так называемое частично упорядоченное множество. Под такой замысловатой формулировкой замаскирована простая мысль: какие-то пары катастроф можно сравнивать по существу, тогда как другие не поддаются сравнению. Дело не в том, что у нас нет точных данных о количестве погибших или что мы не выработали вполне твердой позиции по отношению к проблеме уничтожения людей — от взрыва ли бомбы или от голодной смерти, вызванной войной. Причина заключается в другом: мы не знаем, на каких весах сравнивать эти катастрофы. Обсуждение вопроса, насколько одна война хуже другой, в корне отличается от обсуждения вопроса, является ли одно число больше другого. На второй вопрос всегда есть ответ. На первый — ответа нет. Если вы хотите осознать, что такое гибель двадцати шести человек от бомбы террориста, представьте себе смерть двадцати шести человек от бомбы террориста, но не где-то на другом конце света, а в своем родном городе. Такой подход будет абсолютно безупречен как с математической, так и с моральной точки зрения — и никакой калькулятор вам не понадобится.

Источник: theoryandpractice.ru




ОТПРАВИТЬ:       



 




Статьи по теме:



«Ничего такого Толстой не хотел»

Юрий Сапрыкин о том, как читать классическую литературу

«Теории и практики» опубликовали конспект лекции Юрия Сапрыкина, который недавно вместе с коллегами запустил проект о русской литературе «Полка». Он рассказал, как Пушкин, Толстой и Достоевский стали классикой, почему давно пора отказаться от вопроса «Что хотел сказать автор?», который так любят задавать учителя литературы, зачем взрослым людям перечитывать книги из школьной программы и как это делать, чтобы казалось, что читаешь произведение впервые.

21.05.2018 13:00, Nastya Nikolaeva, theoryandpractice.ru


Александр Пятигорский — «Чуть-чуть о философии Владимира Набокова»

Кто он?

Отстранение Набокова от его собственной эмигрантской судьбы (судьба — это не жизнь) — уже было в его русских романах и рассказах. Будущие биографы и мемуаристы будут из кожи вон лезть, чтобы снова вернуть, вставить, вдавить Набокова в эмигрантскую судьбу и тем приравнять себя к нему, «приставить» его к себе. Набоков же, если судить по им написанному, не был великий охотник до компании. В вещах важных — особенно.

20.05.2018 16:00, Александр Пятигорский, izbrannoe.com


Большие кулисы Большого театра

Императорская Москва

Сергей Аксаков (1791–1859), другой приятель Верстовского, был мастером на все руки: поэтом, переводчиком, литературным и музыкальным критиком, популярным чтецом-декламатором, а также отцом восьми дочерей и шести сыновей, двое из которых — Константин и Иван — стали вождями московского славянофильства. Родитель их правоверным славянофилом никогда, в общем, не был. Позднее он прославился замечательными книгами об охоте и уженье рыбы, а также автобиографической прозой, которую с полным основанием давно считают классикой жанра.

19.05.2018 16:00, Соломон Волков, gefter.ru


Теория свободных радикалов

Откуда берутся болезни и как радиация вредит здоровью

До конца XIX века о радиоактивности ничего не знали, хотя последствия переоблучения проявлялись и раньше. Первая массовая гибель от радиации случилась еще в XVI столетии (тогда болезнь называли «горняцкой чахоткой», от нее страдали австрийские горняки, а ее причину установили позже), а в начале XX века от онкологических заболеваний умерли многие врачи, которые работали с рентгеновскими лучами.

05.05.2018 13:00, theoryandpractice.ru


Что станет с Землёй через сто, тысячу, миллион лет

Глава «Будущее» из книги профессора геологии Роберта Хейзена «История Земли»

Большинство из нас не заглядывает на несколько миллиардов лет вперёд, как не заглядывает на несколько миллионов лет или даже на тысячу лет. Нас беспокоят более насущные заботы: как мне оплатить высшее образование для ребёнка через десять лет? Получу ли я повышение по службе через год? Что приготовить на обед? В этом контексте нам незачем волноваться. Исключая непредвиденную катастрофу, наша планета через год, через десять лет почти не изменится. Но несомненно одно: Земля продолжает меняться.

01.05.2018 13:00, Роберт Хейзен, vc.ru


Научитесь говорить «нет»

Датский психолог Свен Бринкман предлагает семь простых правил, следуя которым можно стать свободным от навязанной позитивной психологии

В умении говорить «Я не хочу» есть огромная сила и целостность. Только запрограммированные роботы всегда на все согласны. Когда, например, на мероприятии по развитию персонала вам предложат пройти курс «личностного развития», просто вежливо откажитесь. Тренируйтесь говорить «нет» по крайней мере пять раз в день.

17.04.2018 13:00, Юлия Кудерова, zozhnik.ru


Аллергия на идеалы

Виктор Франкл объясняет, почему счастье не может быть целью и смыслом жизни

Гонка за счастьем обесценивает его, а чем больше человек стремится к удовольствию, тем у него меньше шансов его достичь, считал психиатр и основатель логотерапии Виктор Франкл. Удовольствие, по его мнению, должно быть не целью, а «побочным эффектом достижения цели». T&P публикуют отрывок из книги «Воля к смыслу», где он объясняет, из-за чего мы часто путаем повод поплакать и причину для слез, почему в благополучном обществе люди страдают от недостатка требований к ним, а также как американский и европейский подход к образованию от страха навязывать молодежи смыслы и цели привел к аллергии на идеалы.

16.04.2018 13:00, theoryandpractice.ru


Синдром самозванца

Почему самокритика и перфекционизм мешают нам стать гениями

Исследования в области нейрофизиологии показали, что внезапное вдохновение — на самом деле предсказуемая часть сложного мыслительного процесса, утверждают Оливия Фокс Кабейн и Джуда Поллак в книге «Сеть и бабочка. Как поймать гениальную идею. Практическое пособие», которую выпустило издательство «Альпина Паблишер». T&P опубликовали главу о том, что такое «социальное торможение», почему мы так боимся, что о нас подумают другие, и как справляться с перфекционизмом.

07.04.2018 13:00, theoryandpractice.ru


«Ну, и последний кусочек...»

Вызывает ли еда зависимость?

Врач-диетолог Елена Мотова написала отличную книгу «Мой лучший друг – желудок. Еда для умных людей», в которой профессионально и с юмором рассматривает серьезные и важные вопросы деятельности нашего организма.

07.04.2018 09:00, Елена Мотова, zozhnik.ru


«Я не считаю себя интеллектуалом. В конце концов, я — это просто я»

К.Г. Юнг — интервью Гордону Янгу «Искусство жить» (1960)

Журналистская карьера Янга очень увлекательна. Он был ведущим корреспондентом агентства Рейтер в Берлине до войны; во время войны был корреспондентом на Ближнем Востоке и в Европе, и в этот период был прикреплен к Первой Американской Армии. В конце войны он совершил тайное путешествие в оккупированную немцами Данию, в датское подполье. До своей смерти в 1964 году, Янг был помощником директора Международного института в Цюрихе.

04.04.2018 13:00, castalia.ru






 

Новости

В Новосибирске вышел сборник стихов, посвящённых трагически погибшему поэту Виктору Iванiву
Книга «Город Iванiв», состоящая из поэтических посвящений новосибирскому писателю, поэту и переводчику Виктору Iванiву (Иванову), покончившему с собой в феврале 2015 года, вышла на его родине.
Издательство «Наука» и Ассоциация интернет-издателей подписали соглашение о сотрудничестве
В первый день выставки Нон-Фикшен издательство «Наука» и Ассоциация интернет-издателей подписали соглашение о сотрудничестве в рамках программы «Открытая наука». В основе программы лежит реализация проектов по расширению открытого доступа к научным знаниям.
Восьмой "Гарри Поттер"
Новая книга о Гарри Поттере выйдет в России в ноябре
От создателя Гарри Поттера
Джоан Роулинг пишет новую книгу для детей
ММКВЯ снова в Москве
Московская международная книжная ярмарка откроется сегодня на ВДНХ

 

 

Мнения

Иван Бегтин

Слабость и ошибки

Выйти из ситуации без репутационных потерь не удастся

Сейчас блокировки и иные ограничения невозможно осуществлять без снижения качества жизни миллионов людей. Информационное потребление стало частью ежедневных потребностей, и сила государственного воздействия на эти потребности резко выросла, вызывая активное противодействие.

Владимир Яковлев

Зло не должно пройти дальше меня

Самое страшное зло в этом мире было совершено людьми уверенными, что они совершают добро

Зло не должно пройти дальше меня. Я очень люблю этот принцип. И давно стараюсь ему следовать. Но с этим принципом есть одна большая проблема.

Мария Баронова

Эпохальный вопрос

Кто за кого платит в ресторане, и почему в любой ситуации важно оставаться людьми

В комментариях возник вопрос: "Маша, ты платишь за мужчин в ресторанах?!". Кажется, настал момент залезть на броневичок и по этому вопросу.

Николай Подосокорский

Виртуальная дружба

Тенденции коммуникации в Facebook

Дружба в фейсбуке – вещь относительная. Вчера человек тебе писал, что восторгается тобой и твоей «сетевой деятельностью» (не спрашивайте меня, что это такое), а сегодня пишет, что ты ватник, мерзавец, «расчехлился» и вообще «с тобой все ясно» (стоит тебе написать то, что ты реально думаешь про Крым, Украину, США или Запад).

Дмитрий Волошин

Три типа трудоустройства

Почему следует попробовать себя в разных типах работы и найти свой

Мне повезло. За свою жизнь я попробовал все виды трудоустройства. Знаю, что не все считают это везением: мол, надо работать в одном месте, и долбить в одну точку. Что же, у меня и такой опыт есть. Двенадцать лет работал и долбил, был винтиком. Но сегодня хотелось бы порассуждать именно о видах трудоустройства. Глобально их три: найм, фриланс и свой бизнес.

«Этим занимаются контрабандисты, этим занимаются налетчики, этим занимаются воры»

Обращение Анатолия Карпова к участникам пресс-конференции «Музею Рериха грозит уничтожение»

Обращение Анатолия Карпова, председателя Совета Попечителей общественного Музея имени Н. К. Рериха Международного Центра Рерихов, президента Международной ассоциации фондов мира к участникам пресс-конференции, посвященной спасению наследия Рерихов в России.

Марат Гельман

Пособие по материализму

«О чем я думаю? Пытаюсь взрастить в себе материалиста. Но не получается»

Сегодня на пляж высыпало много людей. С точки зрения материалиста-исследователя, это было какое-то количество двуногих тел, предположим, тридцать мужчин и тридцать женщин. Высоких было больше, чем низких. Худых — больше, чем толстых. Блондинок мало. Половина — после пятидесяти, по восьмой части стариков и детей. Четверть — молодежь. Пытливый ученый, быть может, мог бы узнать объем мозга каждого из нас, цвет глаз, взял бы сорок анализов крови и как-то разделил бы всех по каким-то признакам. И даже сделал бы каждому за тысячу баксов генетический анализ.

Владимир Шахиджанян

Заново научиться писать

Как овладеть десятипальцевым методом набора на компьютере

Это удивительно и поразительно. Мы разбазариваем своё рабочее время и всё время жалуемся, мол, его не хватает, ничего не успеваем сделать. Вспомнилось почему-то, как на заре советской власти был популярен лозунг «Даёшь повсеместную грамотность!». Людей учили читать и писать. Вот и сегодня надо учить людей писать.

Дмитрий Волошин, facebook.com/DAVoloshin

Теория самоневерия

О том, почему мы боимся реальных действий

Мы живем в интересное время. Время открытых дискуссий, быстрых перемещений и медленных действий. Кажется, что все есть для принятия решений. Информация, много структурированной информации, масса, и средства ее анализа. Среда, открытая полемичная среда, наработанный навык высказывать свое мнение. Люди, много толковых людей, честных и деятельных, мечтающих изменить хоть что-то, мыслящих категориями целей, уходящих за пределы жизни.

facebook.com/ivan.usachev

Немая любовь

«Мы познакомились после концерта. Я закончил работу поздно, за полночь, оборудование собирал, вышел, смотрю, сидит на улице, одинокая такая. Я её узнал — видел на сцене. Я к ней подошёл, начал разговаривать, а она мне "ыыы". Потом блокнот достала, написала своё имя, и добавила, что ехать ей некуда, с парнем поссорилась, а родители в другом городе. Ну, я её и пригласил к себе. На тот момент жена уже съехала. Так и живём вместе полгода».

Александр Чанцев

Вскоре похолодало

Уикэндовое кино от Александра Чанцева

Радость и разочарование от новинок, маргинальные фильмы прошлых лет и вечное сияние классики.

Ясен Засурский

Одна история, разные школы

Президент журфака МГУ Ясен Засурский том, как добиться единства подходов к прошлому

В последнее время много говорилось о том, что учебник истории должен быть единым. Хотя очевидно, что в итоге один учебник превратится во множество разных. И вот почему.

Ивар Максутов

Необратимые процессы

Тяжелый и мучительный путь общества к равенству

Любая дискриминация одного человека другим недопустима. Какой бы причиной или критерием это не было бы обусловлено. Способностью решать квадратные уравнения, пониманием различия между трансцендентным и трансцендентальным или предпочтениям в еде, вине или сексуальных удовольствиях.

Александр Феденко

Алексей Толстой, призраки на кончике носа

Александр Феденко о скрытых смыслах в сказке «Буратино»

Вы задумывались, что заставило известного писателя Алексея Толстого взять произведение другого писателя, тоже вполне известного, пересказать его и опубликовать под своим именем?

Игорь Фунт

Черноморские хроники: «Подогнал чёрт работёнку»...

Записки вятского лоха. Июнь, 2015

Невероятно красивая и молодая, размазанная тушью баба выла благим матом на всю курортную округу. Вряд ли это был её муж – что, впрочем, только догадки. Просто она очень напоминала человека, у которого рухнули мечты. Причём все разом и навсегда. Жёны же, как правило, прикрыты нерушимым штампом в серпасто-молоткастом: в нём недвижимость, машины, дачи благоверного etc.

Марат Гельман

Четыре способа как можно дольше не исчезнуть

Почему такая естественная вещь как смерть воспринимается нами как трагедия?

Надо просто прожить свою жизнь, исполнить то что предначертано, придет время - умереть, но не исчезнуть. Иначе чистая химия. Иначе ничего кроме удовольствий значения не имеет.

Андрей Мирошниченко, медиа-футурист, автор «Human as media. The emancipation of authorship»

О роли дефицита и избытка в медиа и не только

В презентации швейцарского футуриста Герда Леонарда (Gerd Leonhard) о будущем медиа есть замечательный слайд: кролик окружен обступающей его морковью. Надпись гласит: «Будь готов к избытку. Распространение, то есть доступ к информации, больше не будет проблемой…».

Михаил Эпштейн

Симпсихоз. Душа - госпожа и рабыня

Природе известно такое явление, как симбиоз - совместное существование организмов разных видов, их биологическая взаимозависимость. Это явление во многом остается загадкой для науки, хотя было обнаружено швейцарским ученым С. Швенденером еще в 1877 г. при изучении лишайников, которые, как выяснилось, представляют собой комплексные организмы, состоящие из водоросли и гриба. Такая же сила нерасторжимости может действовать и между людьми - на психическом, а не биологическом уровне.

Игорь Фунт

Евровидение, тверкинг и Винни-Пух

«Простаквашинское» уныние Полины Гагариной

Полина Гагарина с её интернациональной авторской бригадой (Габриэль Аларес, Иоаким Бьёрнберг, Катрина Нурберген, Леонид Гуткин, Владимир Матецкий) решили взять Евровидение-2015 непревзойдённой напевностью и ласковым образным месседжем ко всему миру, на разум и благодатность которого мы полагаемся.

Петр Щедровицкий

Социальная мечтательность

Истоки и смысл русского коммунизма

«Pyccкиe вce cклoнны вocпpинимaть тoтaлитapнo, им чyжд cкeптичecкий кpитицизм эaпaдныx людeй. Этo ecть нeдocтaтoк, npивoдящий к cмeшeнияи и пoдмeнaм, нo этo тaкжe дocтoинcтвo и yкaзyeт нa peлигиoзнyю цeлocтнocть pyccкoй дyши».
Н.А. Бердяев

Лев Симкин

Человек из наградного листа

На сайте «Подвиг народа» висят наградные листы на Симкина Семена Исааковича. Моего отца. Он сам их не так давно увидел впервые. Все четыре. Последний, 1985 года, не в счет, тогда Черненко наградил всех ветеранов орденами Отечественной войны. А остальные, те, что датированы сорок третьим, сорок четвертым и сорок пятым годами, выслушал с большим интересом. Выслушал, потому что самому читать ему трудновато, шрифт мелковат. Все же девяносто.

 

Календарь

Олег Давыдов

Колесо Екатерины

Ток страданий, текущий сквозь время

7 декабря православная церковь отмечает день памяти великомученицы Екатерины Александрийской. Эта святая считалась на Руси покровительницей свадеб и беременных женщин. В её день девушки гадали о суженом, а парни устраивали гонки на санках (и потому Екатерину называли Санницей). В общем, это был один из самых весёлых праздников в году. Однако в истории Екатерины нет ничего весёлого.

Ив Фэрбенкс

Нельсон Мандела, 1918-2013

5 декабря 2013 года в Йоханнесбурге в возрасте 95 лет скончался Нельсон Мандела. Когда он болел, Ив Фэрбенкс написала эту статью о его жизни и наследии

Достижения Нельсона Ролилахлы Манделы, первого избранного демократическим путем президента Южной Африки, поставили его в один ряд с такими людьми, как Джордж Вашингтон и Авраам Линкольн, и ввели в пантеон редких личностей, которые своей глубокой проницательностью и четким видением будущего преобразовывали целые страны. Брошенный на 27 лет за решетку белым меньшинством ЮАР, Мандела в 1990 году вышел из заточения, готовый простить своих угнетателей и применить свою власть не для мщения, а для создания новой страны, основанной на расовом примирении.

Молот ведьм. Существует ли колдовство?

5 декабря 1484 года началась охота на ведьм

5 декабря 1484 года была издана знаменитая «ведовская булла» папы Иннокентия VIII — Summis desiderantes. С этого дня святая инквизиция, до сих пор увлечённо следившая за чистотой христианской веры и соблюдением догматов, взялась за то, чтобы уничтожить всех ведьм и вообще задушить колдовство. А в 1486 году свет увидела книга «Молот ведьм». И вскоре обогнала по тиражам даже Библию.

Максим Медведев

Фриц Ланг. Апология усталой смерти

125 лет назад, 5 декабря 1890 года, родился режиссёр великих фильмов «Доктор Мабузе…», «Нибелунги», «Метрополис» и «М»

Фриц Ланг являет собой редкий пример классика мирового кино, к работам которого мало применимы собственно кинематографические понятия. Его фильмы имеют гораздо больше параллелей в старых искусствах — опере, балете, литературе, архитектуре и живописи — нежели в пространстве относительно молодой десятой музы.

Игорь Фунт

А портрет был замечателен!

5 декабря 1911 года скончался русский живописец и график Валентин Серов

…Судьба с детства свела Валентина Серова с семьёй Симонович, с сёстрами Ниной, Марией, Надеждой и Аделаидой (Лялей). Он бесконечно любил их, часто рисовал. Однажды Маша и Надя самозабвенно играли на фортепьяно в четыре руки. Увлеклись и не заметили, как братик Антоша-Валентоша подкрался сзади и связал их длинные косы. Ох и посмеялся Антон, когда сёстры попробовали встать!

Юлия Макарова, Мария Русакова

Попробуй, обними!

4 декабря - Всемирный день объятий

В последнее время появляется всё больше сообщений о международном движении Обнимающих — людей, которые регулярно встречаются, чтобы тепло обнять друг друга, а также проводят уличные акции: предлагают обняться прохожим. Акции «Обнимемся?» проходят в Москве, Санкт-Петербурге и других городах России.

Илья Миллер

Благодаря Годара

85 лет назад, 3 декабря 1930 года, родился великий кинорежиссёр, стоявший у истоков французской новой волны

Имя Жан-Люка Годара окутано анекдотами, как ни одно другое имя в кинематографе. И это логично — ведь и фильмы его зачастую представляют собой не что иное, как связки анекдотов и виньеток, иногда даже не скреплённые единым сюжетом.

Денис Драгунский

Революционер де Сад

2 декабря 1814 года скончался философ и писатель, от чьего имени происходит слово «садизм»

Говорят, в штурме Бастилии был виноват маркиз де Сад. Говорят, он там как раз сидел, в июле месяце 1789 года, в компании примерно десятка заключённых.

Александр Головков

Царствование несбывшихся надежд

190 лет назад, 1 декабря 1825 года, умер император Александра I, правивший Россией с 1801 по 1825 год

Александр I стал первым и последним правителем России, обходившимся без органов, охраняющих государственную безопасность методами тайного сыска. Четверть века так прожили, и государство не погибло. Кроме того, он вплотную подошёл к черте, за которой страна могла бы избавиться от рабства. А также, одержав победу над Наполеоном, возглавил коалицию европейских монархов.

Александр Головков

Зигзаги судьбы Маршала Победы

1 декабря 1896 года родился Георгий Константинович Жуков

Его заслуги перед отечеством были признаны официально и всенародно, отмечены высочайшими наградами, которых не имел никто другой. Потом эти заслуги замалчивались, оспаривались, отрицались и снова признавались полностью или частично.


 

Интервью

Энрико Диндо: «Главное – оставаться собой»

20 ноября в Большом зале Московской консерватории в рамках IХ Международного фестиваля Vivacello выступил Камерный оркестр «Солисты Павии» во главе с виолончелистом-виртуозом Энрико Диндо.

В 1997 году он стал победителем конкурса Ростроповича в Париже, маэстро сказал тогда о нем: «Диндо – виолончелист исключительных качеств, настоящий артист и сформировавшийся музыкант с экстраординарным звуком, льющимся, как великолепный итальянский голос». С 2001 года до последних дней Мстислав Ростропович был почетным президентом оркестра I Solisti di Pavia. Благодаря таланту и энтузиазму Энрико Диндо ансамбль добился огромных успехов и завоевал признание на родине в Италии и за ее пределами. Перед концертом нам удалось немного поговорить.

«Музыка Земли» нашей

Пианист Борис Березовский не перестает удивлять своих поклонников: то Прокофьева сыграет словно Шопена – нежно и лирично, то предстанет за роялем как деликатный и изысканный концертмейстер – это он-то, привыкший быть солистом. Теперь вот выступил в роли художественного руководителя фестиваля-конкурса «Музыка Земли», где объединил фольклор и классику. О концепции фестиваля и его участниках «Частному корреспонденту» рассказал сам Борис Березовский.

Александр Привалов: «Школа умерла – никто не заметил»

Покуда школой не озаботится общество, она так и будет деградировать под уверенным руководством реформаторов

Конец учебного года на короткое время поднял на первые полосы школьную тему. Мы воспользовались этим для того, чтобы побеседовать о судьбе российского образования с научным редактором журнала «Эксперт» Александром Николаевичем Приваловым. Разговор шёл о подлинных целях реформы образования, о том, какими знаниями и способностями обладают в реальности выпускники последних лет, бесправных учителях, заинтересованных и незаинтересованных родителях. А также о том, что нужно, чтобы возродить российскую среднюю школу.

Василий Голованов: «Путешествие начинается с готовности сердца отозваться»

С писателем и путешественником Василием Головановым мы поговорили о едва ли не самых важных вещах в жизни – литературе, путешествиях и изменении сознания. Исламский радикализм и математическая формула языка Платонова, анархизм и Хлебников – беседа заводила далеко.

Дик Свааб: «Мы — это наш мозг»

Всемирно известный нейробиолог о том, какие значимые открытия произошли в нейронауке в последнее время, почему сексуальную ориентацию не выбирают, куда смотреть молодым ученым и что не так с рациональностью

Плод осознанного мыслительного процесса ни в коем случае нельзя считать продуктом заведомо более высокого качества, чем неосознанный выбор. Иногда рациональное мышление мешает принять правильное решение.

«Триатлон – это новый ответ на кризис среднего возраста»

Михаил Иванов – тот самый Иванов, основатель и руководитель издательства «Манн, Иванов и Фербер». В 2014 году он продал свою долю в бизнесе и теперь живет в США, открыл новый бизнес: онлайн-библиотеку саммари на максимально полезные книги – Smart Reading.

Андрей Яхимович: «Играть спинным мозгом, развивать анти-деньги»

Беседа с Андреем Яхимовичем (группа «Цемент»), одним из тех, кто создавал не только латвийский, но и советский рок, основателем Рижского рок-клуба, мудрым контркультурщиком и настоящим рижанином – как хороший кофе с черным бальзамом с интересным собеседником в Старом городе Риги. Неожиданно, обреченно весело и парадоксально.

«Каждая собака – личность»

Интервью со специалистом по поведению собак

Антуан Наджарян — известный на всю Россию специалист по поведению собак. Когда его сравнивают с кинологами, он утверждает, что его работа — нечто совсем другое, и просит не путать. Владельцы собак недаром обращаются к Наджаряну со всей страны: то, что от творит с животными, поразительно и кажется невозможным.

«Самое большое зло, которое может быть в нашей профессии — участие в создании пропаганды»

Правила журналистов

При написании любого текста я исхожу из того, что никому не интересно мое мнение о происходящем. Читателям нужно само происходящее, моя же задача - максимально корректно отзеркалить им картинку. Безусловно, у меня есть свои личные пристрастия и политические взгляды, но я оставлю их при себе. Ведь ни один врач не сообщает вам с порога, что он - член ЛДПР.

Юрий Арабов: «Как только я найду Бога – умру, но для меня это будет счастьем»

Юрий Арабов – один из самых успешных и известных российских сценаристов. Он работает с очень разными по мировоззрению и стилистике режиссёрами. Последние работы Арабова – «Фауст» Александра Сокурова, «Юрьев день» Кирилла Серебренникова, «Полторы комнаты» Андрея Хржановского, «Чудо» Александра Прошкина, «Орда» Андрея Прошкина. Все эти фильмы были встречены критикой и зрителями с большим интересом, все стали событиями. Трудно поверить, что эти сюжеты придуманы и написаны одним человеком. Наш корреспондент поговорила с Юрием Арабовым о его детстве и Москве 60-х годов, о героях его сценариев и религиозном поиске.