Как преподавателю организовать работу будущих ученых и что будет, если задавать ученикам вопросы, ответов на которые не знает никто? Опытом делится Павел Бибиков, учитель математики московского лицея «Вторая школа» и научный руководитель лауреата ISEF Данилы Байгушева.
О том, как воспитывать будущих ученых
Я занимаюсь с учениками на базе московского лицея «Вторая школа». Это очень индивидуальная работа, в отличие от олимпиадного движения, которое носит массовый характер. Многие олимпиадники нацелены на решение за несколько часов: они его получают, становятся победителями, но для серьезных результатов в науке такие способности не подходят. Когда мы имеем дело с задачей научного характера, то не можем получить мгновенного результата. Ученые трудятся годами. А в школе ученик получает стандартное домашнее задание и стремится в короткий срок найти решение. Так он привыкает к быстрым результатам. Когда такой школьник берется за научную задачу, то, в скором времени, может почувствовать непреодолимое желание просто бросить. Он не привык к неудачам (причем, именно самые сильные ребята не могут привыкнуть к неудачам). И здесь важна настоящая психологическая поддержка со стороны руководителя.
Я стараюсь дать ученикам несколько задач сразу и, если нужно, помогаю сделать первый шаг – так поиск сразу идет веселее. Математическая задача должна быть чёткой, близкой к жизни и естественной, чтобы у школьника возник интерес найти ответ. А не фантастической: «Незнайки гуляли по луне и считали светофоры по дороге…» В обычных классах ученики решают задачи из учебника. Да, важно отработать какие-то действия, но неужели на этом все обучение заканчивается? На своих уроках я ставлю школьникам открытые вопросы, ответы на которые не знаю и я сам. Если вопросы возникают в ходе освоения нового материала, и оказывается, что дать ответ непросто, то дети сами пытаются это сделать. Это очень ценно, поскольку они сами начинают осваивать материал гораздо глубже.
O трудолюбивых детях и взрослых задачах
Ребята еще в юном возрасте способны делать серьёзные открытия. Мой ученик Данила Байгушев в течение нескольких лет становился победителем международного конкурса ISEF. Будучи еще школьником, он смог найти способ перевода программ с одного языка на другой с сохранением «читаемости» кода, а также решить некоторые проблемы современного олимпиадного программирования. На международном конкурсе Intel ISEF он стал не просто одним из лучших в секции «Программное обеспечение», а представил гибкую систему, позволяющую поддерживать даже эзотерические языки. Это уникальное решение в данной области.
Обычно разработка хорошего проекта занимает не менее года, как правило – даже несколько лет. Так происходит потому, что область исследований шире, чем круг вопросов, рассматриваемый школьной программой. Более того, задачи, которые ставятся перед юными исследователями, не могут быть решены в одночасье – к ним нужно регулярно возвращаться, продумывать, проговаривать. После того как получен результат, необходимо оформить решение: написать статью, публично рассказать о результатах. У выпускника, который начал работу еще в 8-9 классе, времени хватает лишь на один проект.
Одарённости нет, гениальности также не существует. Есть трудолюбие, прилежание и упорство – три важнейших качества, без которых немыслима работа математика. Ни школьнику, ни взрослому человеку не под силу совершить открытие без глубокой предварительной работы, которая требует времени, сил и терпения.
О работе над проектами
Любой проект сложен для школьника психологически: во-первых, ему предстоит создать что-то совершенно новое; во-вторых, общаться с учителем в непривычном формате. На уроках учитель определяет ход занятия, ученик делает только то, что говорит учитель. Проектная работа строится совершенно по-другому: инициатива должна исходить от ученика. Но дети часто стесняются – не потому что глупые и ничего не могут, а потому что школьная система их к такому не готовила. При этом, как правило, задачи придумывает учитель. Откуда они берутся конкретно у меня – я много читаю. Например, труды различных математиков, среди которых Владимир Игоревич Арнольд – его работы я советую читать всем, кто хотел бы взяться за нестандартные интересные задачи.
Решение каждой задачи требует индивидуального подхода. Иногда, чтобы понять формулировку задачи, необходимо освоить теоретический материал – например, геометрию Лобачевского, которую не проходят в школе. Когда вопрос изучен, можно начинать думать о поиске решения. Один из способов – навести школьника на мысль, разбив весь путь на простые участки. Каждый маленький шаг школьник должен уметь делать сам. Как он будет это делать – зависит от него. После того как первый этап пройден, ребенка можно попросить поставить ключевые промежуточные цели, и идти через них к окончательному решению задачи. Если школьник справляется с задачей – для него это, конечно, стимул двигаться дальше. Никаких баллов не я выставляю, так как психологически исследовательский процесс и так тяжел для школьника. Балльная система в данной ситуации – скорее негативная составляющая. Стимулом для школьника будет скорее возможность выступить перед одноклассниками с некоторыми результатами, пусть и промежуточными.
О методике и материалах
Когда педагогу сложно освоить совершенно иную область науки, можно позвать на помощь другого специалиста и руководить проектом вдвоем. Но если человек не занимался научной работой самостоятельно, то ему будет крайне тяжело работать со школьником. Безусловно, материалы и методики научной работы у разных людей разные, поэтому, на мой взгляд, универсального пути нет. Каждый должен выработать его сам. Начинать можно с того, чтобы учиться видеть вопросы и представлять, как искать на них ответы и строить научное исследование.
Конкретные материалы и методические работы зависят непосредственно от направления исследования: в математике их очень много. Некоторые материалы мне приходится писать самостоятельно, потому что для школьника не написано ничего – слишком сложный стиль и терминология. У меня есть одна книга по геометрии Лобачевского, по которой я готовил свой первый выпуск, планирую написать еще что-то в области теории чисел и комбинаторики.
О пути к открытию
Среди математиков есть поговорка: не бойся куда-то идти, бойся никуда не идти. Потому что любое открытие – это действие. Некоторые думают, что математики ничего не делают – сидят, глядя в потолок, и грызут карандаши. А, спустя несколько месяцев, приходит озарение и у них рождается формула или они её во сне видят. Но озарение не приходит, если только «смотреть в потолок». Чтобы получить результат, очень важно проделать огромную работу, даже если иногда будет казаться, что вы идете в ложном направлении.
Дневники проектов представляют собой некий конспект или лабораторную тетрадь, которая фиксирует промежуточные действия, шаги, достижения исследователя. На конкурсе ISEF все физики и химики должны обязательно вести такие тетради, но на математику это не распространяется. Возможно, для школьника или научного руководителя – это очень полезный прием – фиксировать вехи и достижения, отмечать результаты и планы на будущее. Ведь школьники, конечно, кое-что забывают… А вообще, я, пожалуй, соглашусь с математиком, сказавшим, что написание статей – это наказание за триумф мысли, который испытал, когда нашел решение.
Источник: edutainme.ru
Читать @chaskor |
Статьи по теме:
- Число научных исследований против выбросов метана растет .
Ученые утверждают, что в климатических планах должны быть установлены четкие цели для всех типов парниковых газов в зависимости от их физических свойств. - Десять тысяч нечестных ученых.
Почему российская модель финансирования науки провоцирует массовое жульничество: интервью с Анной Кулешовой. - Умер основатель «Билайна».
Дмитрий Зимин скончался на 89-м году жизни. - Мои гены заставили меня сделать это?
Нейробиологические доказательства в суде: как генетика может помочь избежать смертной казни. - Фильмы о научных экспериментах и их последствиях.
- Ученые подтвердили, что первое крупное вымирание вызвали вулканы.
Исследование ученых из Великобритании подтверждает, что основной причиной ордовикско-силурийского вымирания стали вулканические извержения. - Природную ДНК превратили в устойчивый биопластик.
- 20 фактов о ГМО.
Цыплята с зубами, зелёные поросята и генотерапия. - Ученый ученого поймет.
During Frankfurt: компания Springer Nature представила программу автоматического перевода для научных исследований. - Есть ли у растений чувства?
Биологи — о боли в корешках, трипе гороха и лесной солидарности.